Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
2.
Cell Rep Med ; 3(10): 100774, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2050073

ABSTRACT

"Pan-coronavirus" antivirals targeting conserved viral components can be designed. Here, we show that the rationally engineered H84T-banana lectin (H84T-BanLec), which specifically recognizes high mannose found on viral proteins but seldom on healthy human cells, potently inhibits Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (including Omicron), and other human-pathogenic coronaviruses at nanomolar concentrations. H84T-BanLec protects against MERS-CoV and SARS-CoV-2 infection in vivo. Importantly, intranasally and intraperitoneally administered H84T-BanLec are comparably effective. Mechanistic assays show that H84T-BanLec targets virus entry. High-speed atomic force microscopy depicts real-time multimolecular associations of H84T-BanLec dimers with the SARS-CoV-2 spike trimer. Single-molecule force spectroscopy demonstrates binding of H84T-BanLec to multiple SARS-CoV-2 spike mannose sites with high affinity and that H84T-BanLec competes with SARS-CoV-2 spike for binding to cellular ACE2. Modeling experiments identify distinct high-mannose glycans in spike recognized by H84T-BanLec. The multiple H84T-BanLec binding sites on spike likely account for the drug compound's broad-spectrum antiviral activity and the lack of resistant mutants.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2 , Lectins/pharmacology , Mannose/pharmacology , Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus/pharmacology , Antiviral Agents/pharmacology
3.
Signal Transduct Target Ther ; 7(1): 266, 2022 08 03.
Article in English | MEDLINE | ID: covidwho-1972575

ABSTRACT

Defective interfering genes (DIGs) are short viral genomes and interfere with wild-type viral replication. Here, we demonstrate that the new designed SARS-CoV-2 DIG (CD3600) can significantly inhibit the replication of SARS-CoV-2 including Alpha, Delta, Kappa and Omicron variants in human HK-2 cells and influenza DIG (PAD4) can significantly inhibit influenza virus replication in human A549 cells. One dose of influenza DIGs prophylactically protects 90% mice from lethal challenge of A(H1N1)pdm09 virus and CD3600 inhibits SARS-CoV-2 replication in hamster lungs when DIGs are administrated to lungs one day before viral challenge. To further investigate the gene delivery vector in the respiratory tract, a peptidic TAT2-P1&LAH4, which can package genes to form small spherical nanoparticles with high endosomal escape ability, is demonstrated to dramatically increase gene expression in the lung airway. TAT2-P1&LAH4, with the dual-functional TAT2-P1 (gene-delivery and antiviral), can deliver CD3600 to significantly inhibit the replication of Delta and Omicron SARS-CoV-2 in hamster lungs. This peptide-based nanoparticle system can effectively transfect genes in lungs and deliver DIGs to inhibit SARS-CoV-2 variants and influenza virus in vivo, which provides the new insight into the drug delivery system for gene therapy against respiratory viruses.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Nanoparticles , Animals , COVID-19/genetics , Cricetinae , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/prevention & control , Mice , Peptides/genetics , Peptides/pharmacology , SARS-CoV-2/genetics
4.
Cell Discov ; 8(1): 62, 2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1908152

ABSTRACT

The emergence of highly transmissible SARS-CoV-2 variants has led to the waves of the resurgence of COVID-19 cases. Effective antivirals against variants are required. Here we demonstrate that a human-derived peptide 4H30 has broad antiviral activity against the ancestral virus and four Variants of Concern (VOCs) in vitro. Mechanistically, 4H30 can inhibit three distinct steps of the SARS-CoV-2 life cycle. Specifically, 4H30 blocks viral entry by clustering SARS-CoV-2 virions; prevents membrane fusion by inhibiting endosomal acidification; and inhibits the release of virions by cross-linking SARS-CoV-2 with cellular glycosaminoglycans. In vivo studies show that 4H30 significantly reduces the lung viral titers in hamsters, with a more potent reduction for the Omicron variant than the Delta variant. This is likely because the entry of the Omicron variant mainly relies on the endocytic pathway which is targeted by 4H30. Moreover, 4H30 reduces syncytia formation in infected hamster lungs. These findings provide a proof of concept that a single antiviral can inhibit viral entry, fusion, and release.

6.
Cell Biosci ; 12(1): 36, 2022 Mar 22.
Article in English | MEDLINE | ID: covidwho-1759779

ABSTRACT

BACKGROUND: SARS-CoV-2 is the causative agent of COVID-19. Overproduction and release of proinflammatory cytokines are the underlying cause of severe COVID-19. Treatment of this condition with JAK inhibitors is a double-edged sword, which might result in the suppression of proinflammatory cytokine storm and the concurrent enhancement of viral infection, since JAK signaling is essential for host antiviral response. Improving the current JAK inhibitor therapy requires a detailed molecular analysis on how SARS-CoV-2 modulates interferon (IFN)-induced activation of JAK-STAT signaling. RESULTS: In this study, we focused on the molecular mechanism by which SARS-CoV-2 NSP13 helicase suppresses IFN signaling. Expression of SARS-CoV-2 NSP13 alleviated transcriptional activity driven by type I and type II IFN-responsive enhancer elements. It also prevented nuclear translocation of STAT1 and STAT2. The suppression of NSP13 on IFN signaling occurred at the step of STAT1 phosphorylation. Nucleic acid binding-defective mutant K345A K347A and NTPase-deficient mutant E375A of NSP13 were found to have largely lost the ability to suppress IFN-ß-induced STAT1 phosphorylation and transcriptional activation, indicating the requirement of the helicase activity for NSP13-mediated inhibition of STAT1 phosphorylation. NSP13 did not interact with JAK1 nor prevent STAT1-JAK1 complex formation. Mechanistically, NSP13 interacted with STAT1 to prevent JAK1 kinase from phosphorylating STAT1. CONCLUSION: SARS-CoV-2 NSP13 helicase broadly suppresses IFN signaling by targeting JAK1 phosphorylation of STAT1.

7.
Sci Adv ; 7(25)2021 06.
Article in English | MEDLINE | ID: covidwho-1276873

ABSTRACT

Infection by highly pathogenic coronaviruses results in substantial apoptosis. However, the physiological relevance of apoptosis in the pathogenesis of coronavirus infections is unknown. Here, with a combination of in vitro, ex vivo, and in vivo models, we demonstrated that protein kinase R-like endoplasmic reticulum kinase (PERK) signaling mediated the proapoptotic signals in Middle East respiratory syndrome coronavirus (MERS-CoV) infection, which converged in the intrinsic apoptosis pathway. Inhibiting PERK signaling or intrinsic apoptosis both alleviated MERS pathogenesis in vivo. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and SARS-CoV induced apoptosis through distinct mechanisms but inhibition of intrinsic apoptosis similarly limited SARS-CoV-2- and SARS-CoV-induced apoptosis in vitro and markedly ameliorated the lung damage of SARS-CoV-2-inoculated human angiotensin-converting enzyme 2 (hACE2) mice. Collectively, our study provides the first evidence that virus-induced apoptosis is an important disease determinant of highly pathogenic coronaviruses and demonstrates that this process can be targeted to attenuate disease severity.


Subject(s)
Antiviral Agents/pharmacology , Apoptosis/drug effects , COVID-19 Drug Treatment , Coronavirus Infections/drug therapy , eIF-2 Kinase/metabolism , Adenine/analogs & derivatives , Adenine/pharmacology , Angiotensin-Converting Enzyme 2/genetics , Animals , Apoptosis/physiology , COVID-19/etiology , COVID-19/pathology , Cell Line , Coronavirus Infections/etiology , Coronavirus Infections/pathology , Dipeptidyl Peptidase 4/genetics , Epithelial Cells/virology , Female , Humans , Indoles/pharmacology , Lung/virology , Male , Mice, Transgenic , eIF-2 Kinase/antagonists & inhibitors , eIF-2 Kinase/genetics
8.
Int J Biol Sci ; 17(6): 1547-1554, 2021.
Article in English | MEDLINE | ID: covidwho-1206441

ABSTRACT

Suppression of type I interferon (IFN) response is one pathological outcome of the infection of highly pathogenic human coronaviruses. To effect this, severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 encode multiple IFN antagonists. In this study, we reported on the IFN antagonism of SARS-CoV-2 main protease NSP5. NSP5 proteins of both SARS-CoV and SARS-CoV-2 counteracted Sendai virus-induced IFN production. NSP5 variants G15S and K90R commonly seen in circulating strains of SARS-CoV-2 retained the IFN-antagonizing property. The suppressive effect of NSP5 on IFN-ß gene transcription induced by RIG-I, MAVS, TBK1 and IKKϵ suggested that NSP5 likely acts at a step downstream of IRF3 phosphorylation in the cytoplasm. NSP5 did not influence steady-state expression or phosphorylation of IRF3, suggesting that IRF3, regardless of its phosphorylation state, might not be the substrate of NSP5 protease. However, nuclear translocation of phosphorylated IRF3 was severely compromised in NSP5-expressing cells. Taken together, our work revealed a new mechanism by which NSP5 proteins encoded by SARS-CoV and SARS-CoV-2 antagonize IFN production by retaining phosphorylated IRF3 in the cytoplasm. Our findings have implications in rational design and development of antiviral agents against SARS-CoV-2.


Subject(s)
Cell Nucleus/metabolism , Coronavirus 3C Proteases/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon Type I/biosynthesis , SARS-CoV-2/enzymology , Animals , COVID-19/virology , Chlorocebus aethiops , Humans , Phosphorylation , Protein Transport , Vero Cells
9.
J Immunol ; 205(6): 1564-1579, 2020 09 15.
Article in English | MEDLINE | ID: covidwho-694818

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic human coronavirus causing severe disease and mortality. MERS-CoV infection failed to elicit robust IFN response, suggesting that the virus might have evolved strategies to evade host innate immune surveillance. In this study, we identified and characterized type I IFN antagonism of MERS-CoV open reading frame (ORF) 8b accessory protein. ORF8b was abundantly expressed in MERS-CoV-infected Huh-7 cells. When ectopically expressed, ORF8b inhibited IRF3-mediated IFN-ß expression induced by Sendai virus and poly(I:C). ORF8b was found to act at a step upstream of IRF3 to impede the interaction between IRF3 kinase IKKε and chaperone protein HSP70, which is required for the activation of IKKε and IRF3. An infection study using recombinant wild-type and ORF8b-deficient MERS-CoV further confirmed the suppressive role of ORF8b in type I IFN induction and its disruption of the colocalization of HSP70 with IKKε. Ectopic expression of HSP70 relieved suppression of IFN-ß expression by ORF8b in an IKKε-dependent manner. Enhancement of IFN-ß induction in cells infected with ORF8b-deficient virus was erased when HSP70 was depleted. Taken together, HSP70 chaperone is important for IKKε activation, and MERS-CoV ORF8b suppresses type I IFN expression by competing with IKKε for interaction with HSP70.


Subject(s)
Enzyme Activation/immunology , I-kappa B Kinase/immunology , Interferon Type I/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Viral Proteins/immunology , Betacoronavirus , COVID-19 , Cell Line , Coronavirus Infections , HSP70 Heat-Shock Proteins/immunology , HSP70 Heat-Shock Proteins/metabolism , Humans , I-kappa B Kinase/metabolism , Interferon Type I/metabolism , Middle East Respiratory Syndrome Coronavirus/metabolism , Pandemics , Pneumonia, Viral , SARS-CoV-2 , Viral Proteins/metabolism
10.
Nat Commun ; 12(1): 1517, 2021 03 09.
Article in English | MEDLINE | ID: covidwho-1125914

ABSTRACT

Up to date, effective antivirals have not been widely available for treating COVID-19. In this study, we identify a dual-functional cross-linking peptide 8P9R which can inhibit the two entry pathways (endocytic pathway and TMPRSS2-mediated surface pathway) of SARS-CoV-2 in cells. The endosomal acidification inhibitors (8P9R and chloroquine) can synergistically enhance the activity of arbidol, a spike-ACE2 fusion inhibitor, against SARS-CoV-2 and SARS-CoV in cells. In vivo studies indicate that 8P9R or the combination of repurposed drugs (umifenovir also known as arbidol, chloroquine and camostat which is a TMPRSS2 inhibitor), simultaneously interfering with the two entry pathways of coronaviruses, can significantly suppress SARS-CoV-2 replication in hamsters and SARS-CoV in mice. Here, we use drug combination (arbidol, chloroquine, and camostat) and a dual-functional 8P9R to demonstrate that blocking the two entry pathways of coronavirus can be a promising and achievable approach for inhibiting SARS-CoV-2 replication in vivo. Cocktail therapy of these drug combinations should be considered in treatment trials for COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Repositioning , Peptides/pharmacology , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Animals , COVID-19/virology , Chlorocebus aethiops , Chloroquine/pharmacology , Drug Discovery , Female , HEK293 Cells , Humans , Indoles/pharmacology , Mice , Mice, Inbred BALB C , Serine Endopeptidases/metabolism , Vero Cells
11.
Cell ; 184(8): 2212-2228.e12, 2021 04 15.
Article in English | MEDLINE | ID: covidwho-1116430

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause acute respiratory disease and multiorgan failure. Finding human host factors that are essential for SARS-CoV-2 infection could facilitate the formulation of treatment strategies. Using a human kidney cell line-HK-2-that is highly susceptible to SARS-CoV-2, we performed a genome-wide RNAi screen and identified virus dependency factors (VDFs), which play regulatory roles in biological pathways linked to clinical manifestations of SARS-CoV-2 infection. We found a role for a secretory form of SARS-CoV-2 receptor, soluble angiotensin converting enzyme 2 (sACE2), in SARS-CoV-2 infection. Further investigation revealed that SARS-CoV-2 exploits receptor-mediated endocytosis through interaction between its spike with sACE2 or sACE2-vasopressin via AT1 or AVPR1B, respectively. Our identification of VDFs and the regulatory effect of sACE2 on SARS-CoV-2 infection shed insight into pathogenesis and cell entry mechanisms of SARS-CoV-2 as well as potential treatment strategies for COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Host Microbial Interactions/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vasopressins/immunology , Virus Internalization , COVID-19/immunology , COVID-19/virology , Cell Line , Humans , Protein Binding
12.
Nat Commun ; 11(1): 4252, 2020 08 25.
Article in English | MEDLINE | ID: covidwho-741685

ABSTRACT

The 2019 novel respiratory virus (SARS-CoV-2) causes COVID-19 with rapid global socioeconomic disruptions and disease burden to healthcare. The COVID-19 and previous emerging virus outbreaks highlight the urgent need for broad-spectrum antivirals. Here, we show that a defensin-like peptide P9R exhibited potent antiviral activity against pH-dependent viruses that require endosomal acidification for virus infection, including the enveloped pandemic A(H1N1)pdm09 virus, avian influenza A(H7N9) virus, coronaviruses (SARS-CoV-2, MERS-CoV and SARS-CoV), and the non-enveloped rhinovirus. P9R can significantly protect mice from lethal challenge by A(H1N1)pdm09 virus and shows low possibility to cause drug-resistant virus. Mechanistic studies indicate that the antiviral activity of P9R depends on the direct binding to viruses and the inhibition of virus-host endosomal acidification, which provides a proof of concept that virus-binding alkaline peptides can broadly inhibit pH-dependent viruses. These results suggest that the dual-functional virus- and host-targeting P9R can be a promising candidate for combating pH-dependent respiratory viruses.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Influenza A virus/drug effects , Peptides/pharmacology , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Cell Line , Endosomes/chemistry , Endosomes/drug effects , Female , Humans , Hydrogen-Ion Concentration , Influenza A virus/metabolism , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/metabolism , Peptides/chemistry , Peptides/metabolism , Peptides/therapeutic use , Protein Binding , Protein Conformation , Rhinovirus/drug effects , Rhinovirus/metabolism , Viral Load/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL